Invariants of the orthosymplectic Lie superalgebra and super Pfaffians
نویسندگان
چکیده
منابع مشابه
Representations of the orthosymplectic Lie superalgebra osp(1|4) and paraboson coherent states
Soon after parastatistics has been introduced [1], it was discovered that it has a deep algebraic structure. It turned out that any n pairs of parafermion operators generate the simple Lie algebra so(2n + 1) [2, 3], and n pairs of paraboson creation and annihilation operators b 1 , . . . , bn generate a Lie superalgebra [4], isomorphic to one of the basic classical Lie superalgebras in the clas...
متن کاملInvariants of the vacuum module associated with the Lie superalgebra gl(1|1)
We describe the algebra of invariants of the vacuum module associated with an affinization of the Lie superalgebra gl(1|1). We give a formula for its Hilbert–Poincaré series in a fermionic (cancellation-free) form which turns out to coincide with the generating function of the plane partitions over the (1, 1)-hook. Our arguments are based on a super version of the Beilinson–Drinfeld–Räıs–Tauvel...
متن کاملYangian of the Queer Lie Superalgebra
Consider the complex matrix Lie superalgebra glN|N with the standard generators Eij where i, j = ±1 , . . . ,±N . Define an involutory automorphism η of glN|N by η (Eij) = E−i,−j . The twisted polynomial current Lie superalgebra g = {X(u) ∈ glN|N [u] : η (X(u)) = X(−u) } has a natural Lie co-superalgebra structure. We quantise the universal enveloping algebra U(g) as a co-Poisson Hopf superalge...
متن کاملHowe Duality and Combinatorial Character Formula for Orthosymplectic Lie Superalgebras
We study the Howe dualities involving the reductive dual pairs (O(d), spo(2m|2n)) and (Sp(d), osp(2m|2n)) on the (super)symmetric tensor of C ⊗ C. We obtain complete decompositions of this space with respect to their respective joint actions. We also use these dualities to derive a character formula for these irreducible representations of spo(2m|2n) and osp(2m|2n) that appear in these decompos...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2016
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-016-1789-4